Analysis of Forest Change Detection Induced by Hurricane Helene Using Remote Sensing Data

forest disturbance change detection spectral indices remote sensing data GIS data drone images
["Ansari, Rizwan Ahmed","Esimaje, Tony","Ibrahim, Oluwatosin Michael","Mulrooney, Timothy"] 2025-05-08 期刊论文
(5)
The occurrence of hurricanes in the southern U.S. is on the rise, and assessing the damage caused to forests is essential for implementing protective measures and comprehending recovery dynamics. This work aims to create a novel data integration framework that employs LANDSAT 8, drone-based images, and geographic information system data for change detection analysis for different forest types. We propose a method for change vector analysis based on a unique spectral mixture model utilizing composite spectral indices along with univariate difference imaging to create a change detection map illustrating disturbances in the areas of McDowell County in western North Carolina impacted by Hurricane Helene. The spectral indices included near-infrared-to-red ratios, a normalized difference vegetation index, Tasseled Cap indices, and a soil-adjusted vegetation index. In addition to the satellite imagery, the ground truth data of forest damage were also collected through the field investigation and interpretation of post-Helene drone images. Accuracy assessment was conducted with geographic information system (GIS) data and maps from the National Land Cover Database. Accuracy assessment was carried out using metrics such as overall accuracy, precision, recall, F score, Jaccard similarity, and kappa statistics. The proposed composite method performed well with overall accuracy and Jaccard similarity values of 73.80% and 0.6042, respectively. The results exhibit a reasonable correlation with GIS data and can be employed to assess damage severity.
来源平台:FORESTS