Influence of high-strain rate on the shear strength of normally consolidated kaolin clay

Clay Hardening Kaolin Model calibration Normally consolidated Rate effect Shear strength
["Ads, A","Dinotte, J","Omidvar, M","Bless, S","Iskander, M"] 2025-05-27 期刊论文
Stress-strain results from high-strain rate consolidated-undrained (CU) triaxial compression tests on partially saturated kaolin clay are presented. The work addresses the scarcity of high-strain rate data for cohesive soils and provides updated strain rate coefficients for kaolin clay. It covers strain rates from quasi-static (0.01%/s) to dynamic (800%/s) regimes. Kaolin clay specimens were prepared wet of optimum using static compaction at a constant water content of 32 +/- 1% and a degree of saturation of 96 +/- 2%. The specimens were then loaded into triaxial cells and consolidated under pressures ranging from 70 to 550 kPa for 24 h prior to testing. Tests were conducted using a modified hydraulic frame, and a methodology for correcting compression data to account for inertial effects observed during high-rate testing was adopted. The data revealed significant strengthening of clays with increased strain rates, especially at low confining pressures. Lightly confined clays (sigma 3 = 70 kPa) experienced a 165% strength increase, while highly confined clays (sigma 3 = 550 kPa) showed a 52% increase. Analysis using secant moduli revealed increased stiffening with loading rate. Posttest examination of specimens revealed a decrease of shear localization with increasing strain rate, indicating that a transition in failure mode contributes to the increased strengthening and stiffening of clays at high rates. The stress-strain data were used to calibrate the semilogarithmic and power law strain hardening models, yielding lambda and beta values that decreased linearly with increasing confining pressure. Equations relating lambda and beta to confining pressure were developed for practical applications, applicable to normally consolidated clays under confining pressures up to approximately 5 atmospheres.
来源平台:ACTA GEOTECHNICA