Mapping the Vulnerability of Boreal Permafrost in Central Alaska in Relation to Thaw Rate, Ground Ice, and Thermokarst Development
["Jorgenson, M. Torre","Douglas, Thomas A","Shur, Yuri L","Kanevskiy, Mikhail Z"]
2025-06-01
期刊论文
(6)
Permafrost roughly affects half of the boreal region in Alaska and varies greatly in its thermo-physical properties and genesis. In boreal ecosystems, permafrost formation and degradation respond to complex interactions among climate, topography, hydrology, soils, vegetation, and disturbance. We synthesized data on soil thermal conditions and permafrost characteristics to assess current permafrost conditions in central Alaska, and classified and mapped soil landscapes vulnerable to future thaw and thermokarst development. Permafrost soil properties at 160 sites ranged from rocky soils in hillslope colluvium and glacial till, to silty loess, to thick peats on abandoned floodplains and bogs, across 64 geomorphic units. Ground-ice contents (% moisture) varied greatly across geomorphic units. Mean annual ground temperatures at similar to 1 m depth varied 12.5 degrees C across 77 sites with most permafrost near thawing or actively thawing. To assess the vulnerability of permafrost to climate variability and disturbance, we differentiated permafrost responses in terms of rate of thaw, potential thaw settlement, and thermokarst development. Using a rule-based model that uses geomorphic units for spatial extrapolation at the landscape scale, we mapped 10 vulnerability classes across three areas in central Alaska ranging from high potential settlement/low thaw rate in extremely ice-rich loess to low potential settlement/high thaw rate in rocky hillslope colluvium. Permafrost degradation is expected to result in 10 thermokarst landform types. Vulnerability classes corresponded to thermokarst features that developed in response to past climates. Differing patterns in permafrost vulnerability have large implications for ecosystem trajectories, land use, and infrastructure damage from permafrost thaw.
来源平台:JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE