Influence of silica fume and carbide slag on waste mud soil under small strain: Dynamic characteristics and microscopic mechanism
["Li, Na","Lin, Jingyi","Wu, Erlu","Jiang, Ping","Zhang, Zhicheng","Wang, Junjie","Wang, Wei"]
2025-10-01
期刊论文
Silica fume and carbide slag can be used to modify waste mud soil (WMS), which can not only improve the mechanical properties of WMS, but also broaden resource utilization ways of silica fume and carbide slag. For that, in this paper, WMS was modified by adopting 8 % carbide slag and silica fume with different dosages (0, 3 %, 5 %, 7 %, 9 %, and 11 %). Then the small-strain dynamic properties of modified WMS were investigated by using resonance column test, and the microscopic mechanism of modified WMS was analyzed based on Scanning electron microscopy (SEM), Energy dispersive X-ray spectrometer (EDS), Transmission electron microscopy (TEM), X-ray diffraction test (XRD) and Mercury intrusion porosimetry (MIP). It can be found from the resonance column test that the dynamic shear modulus and the damping ratio show an increasing and decreasing trend with the increase of the confining pressure respectively, and both increase with increasing silica fume dosage in the range of 0 to 11 %. A kinetic model applicable to modified WMS was established by introducing the effects of confining pressure and silica fume into the Hardin-Drnevich model. Microscopic testing experiments indicate that there is a reaction between reactive SiO2 in silica fume and Ca(OH)2 in carbide slag, and calcium hydrated silicate (CSH) was generated, which improved the specimen density.
来源平台:SUSTAINABLE MATERIALS AND TECHNOLOGIES