Seismic performance of buried iron pipeline considering spatial variability of soil properties in 2D model

Buried iron pipeline Seismic response Soil properties Spatial variability Random field theory
["Hou, Benwei","Xu, Chenzhao","Xu, Qianyi","Han, Junyan","Zhong, Zilan"] 2025-09-01 期刊论文
Iron pipes connected by bell-spigot joints are utilized in buried pipeline systems for urban water and gas supply networks. The joints are the weak points of buried iron pipelines, which are particularly vulnerable to damage from excessive axial opening during seismic motion. The axial joint opening, resulting from the relative soil displacement surrounding the pipeline, is an important indicator for the seismic response of buried iron pipelines. The spatial variability of soil properties has a significant influence on the seismic response of the site soil, which subsequently affects the seismic response of the buried iron pipeline. In this study, two-dimensional finite element models of a generic site with explicit consideration of random soil properties and random mechanical properties of pipeline joints were established to investigate the seismic response of the site soil and the buried pipeline, respectively. The numerical results show that with consideration of the spatial variability of soil properties, the maximum axial opening of pipeline joints increases by at least 61.7 %, compared to the deterministic case. Moreover, in the case considering the variability of pipeline-soil interactions and joint resistance, the spatial variability of soil properties remains the dominant factor influencing the seismic response of buried iron pipelines.
来源平台:COMPUTERS AND GEOTECHNICS