Load transfer mechanism variations of post-grouting piles in collapsible loess upon water infiltration
["Liu, Yunlong","Zhang, Lei","Zhang, Jingwei","Mehmood, Mudassir","Li, Ming","Guo, Fuyin"]
2025-10-01
期刊论文
Post-grouting pile technology has gained extensive application in collapsible loess regions through the injection of slurry to compress and consolidate the soil at the pile base, thereby forming an enlarged base that enhances the foundation's bearing capacity and reduces settlement. Despite the prevalent unsaturated state of loess in most scenarios, the conventional design methodologies for piles in collapsible loess predominantly rely on saturated soil mechanics principles. The infiltration of water can significantly deteriorate the mechanical properties of loess due to the reduction in matric suction and the occurrence of collapsible deformation, leading to a substantial degradation in the bearing behavior of piles. To explore the variations in load transfer mechanisms of post-grouting piles in collapsible loess under conditions of intense precipitation, a comprehensive large-scale model test was conducted. The findings revealed that the post-grouting technique effectively mitigates the adverse effects of negative pile shaft friction in saturated zones on the pile's bearing behavior. Furthermore, the failure criteria for piles may shift from the shear failure of the base soil to excessive pile settlement. By incorporating principles of unsaturated soil mechanics, modified load transfer curves were developed to describe the mobilization of both pile shaft friction and base resistance. These curves facilitate the extension of the traditional load transfer method to post-grouting piles in collapsible soils under extreme weather conditions. The proposed revised load transfer method is characterized by its simplicity, requiring only a few soil indices and mechanical properties, making it highly applicable in engineering practice.
来源平台:SOIL DYNAMICS AND EARTHQUAKE ENGINEERING