Targeting the engineering properties of poor strength and susceptibility to damage in roadbeds and slopes within clay regions, xanthan gum is employed as a soil enhancer, concurrently addressing the issue of the low utilization rate of plant coir fiber. The unconfined compressive strength test (UCS) is used to analyze the influence of different maintenance methods, maintenance duration, xanthan gum dosage, and coconut fiber dosage on the mechanical properties of the enhanced soil. Furthermore, based on scanning electron microscope (SEM) tests, the underlying mechanisms governing the mechanical properties of fiber-reinforced xanthan gum-improved soil are uncovered. The results indicated that the compressive strength of amended soil is significantly enhanced by the incorporation of xanthan gum and coir fiber. After 28 days of conditioning, the compressive strength of the amended soil under dry conditions (conditioned in air) was significantly higher (3 MPa) than that under moist conditions (conditioned in plastic wrap) (0.57 MPa). Xanthan gum influenced both the compressive strength of the specimens and the degree of strength enhancement, whereas coir fibers not only augmented the strength of the specimens but also converted them from brittle to ductile, thereby imparting residual strength post-destruction. Microscopic analysis indicates that the incorporation of xanthan gum and coconut shell fiber significantly diminishes the number of pores and cracks within the soil matrix, while enhancing the internal inter-particle cementation. This synergistic effect contributes to soil improvement, providing theoretical and technical guidance for roadbed enhancement and slope repair.