Arsenic-induced toxicity in Ocimum basilicum L.: A comprehensive analysis of physio-biochemical, microscopic, histochemical, chromatographic, and reactive oxygen species alterations

Antioxidants Essential oil Linalool Methyl chavicol Trichomes
["Hajam, Asif Hussain","Bashri, Gausiya"] 2025-09-15 期刊论文
Arsenic (As) contamination in soil presents significant challenges to plant growth and development, impacting agricultural productivity, food safety, ecosystem stability, and human health. This study investigates the effects of As toxicity on the medicinal plant Ocimum basilicum L. cultivar CIM-Saumya by assessing the impact of varying As concentrations (1, 5, 10, and 25 mg kg-1 of soil) on various physio-biochemical and microscopic parameters. Controlled experiments were conducted to assess the photosynthetic rate, gas exchange, and the activities of carbonic anhydrase (CA), Rubisco, and nitrate reductase (NR) enzymes. In addition, the concentrations of non-enzymatic antioxidants (proline, flavonoids, and phenolic compounds) and enzymatic antioxidants (superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX) were analyzed. Alterations in glandular trichomes, essential oil (EO) content, and composition were also evaluated. Confocal laser scanning microscopy (CLSM) was utilized to examine root cell viability and detect reactive oxygen species (ROS). Our results revealed that As exposure significantly inhibited physio-biochemical activities in O. basilicum, with low As concentrations (1 mg kg-1) enhancing EO content by 18.75 %. However, higher As concentrations (25 mg kg-1) induced oxidative stress, evidenced by increased malondialdehyde (MDA), ROS accumulation, reduced trichome size and density, and smaller stomatal apertures. The highest As concentration resulted in a 53.12 % reduction in EO content. These findings demonstrate that O. basilicum exhibits differential responses to As stress, with low concentrations enhancing EO production, while high concentrations cause oxidative damage and reduced EO content, providing insights into the plant's adaptive strategies and potential alterations in its aroma and therapeutic properties under As stress.
来源平台:ENVIRONMENTAL POLLUTION