Debris flows are catastrophic mass movements with significant social and environmental consequences, particularly in the Western Himalayas. Understanding the rheological properties of debris flow material is crucial for accurately modeling their behavior and predicting their impacts. In this study, rheological parameters such as yield stress and viscosity were determined through extensive laboratory testing using a parallel plate setup in a rheometer. Reconstituted soil samples from the debris flow zone were prepared using an optimized sampling approach to vary the solid volume concentration and water content (w/c). Experimental results revealed non-Newtonian behavior for all tested compositions, which closely aligned with the Herschel-Bulkley rheological model. The Herschel-Bulkley parameters were subsequently used to calibrate a smooth particle hydrodynamics (SPH) model in the open-access DualSPHysics tool. The results showed that water content and silt concentration played a significant role in influencing the rheology, with finer particles exhibiting higher viscosity and shear stress compared to coarser particles. The SPH simulations effectively replicated the flow behavior observed during the Kotrupi debris flow event (2017), providing insights into flow dynamics, such as velocity and shear distribution. This integration of experimental rheology and numerical modeling advances our understanding of debris flow mechanics and highlights the importance of incorporating rheological calibration in predictive debris flow models.