Granular materials usually copossess inherent and stress-induced anisotropy that significantly influences their mechanical behaviors. This paper presents a series of true-triaxial tests on aeolian sands to consider the inherent and stress-induced anisotropy in terms of soil deposition angles and intermediate principal stress coefficients, respectively. These results show that the deposition angle primarily affected the elastic-plastic stage under axisymmetric conditions. Otherwise, the deposition angle affects all deformation processes after the elastic stage when the intermediate principal stress coefficient changes. Moreover, the critical state is not unique but depends on the combined effect of the deposition angle and the intermediate principal stress coefficient, which indicates that the strength, stress-strain response, and dilatancy behavior of sands are affected by both inherent and stress-induced anisotropy.