Ultra-high performance concrete (UHPC), due to its superior mechanical and durability properties, is extensively applied in saline soil areas. In this paper, the damage evolution process and constitutive relationship of UHPC under sulfate dry-wet cycling were investigated through mechanical property tests combined with acoustic emission (AE) technology. The results showed that With the increase in erosion cycles and SO42- content, the proportion of low-amplitude (<= 50 dB) AE events exhibited a decreasing trend. In contrast, the fraction of medium-and high-amplitude AE events gradually increased, suggesting that large-scale damage began to play a dominant role in the specimen's deterioration process. Based on AE characteristic parameters, the damage evolution model of UHPC under uniaxial compression was established, the model can effectively characterize the uniaxial compression damage evolution behavior of UHPC under sulfate dry-wet cycling, providing theoretical support for the service performance evaluation of UHPC structures in saline soil areas.
来源平台:JOURNAL OF SUSTAINABLE CEMENT-BASED MATERIALS