铁矿采选管理中资源利用与节能降耗目标制定及控制策略研究

资源节约 节能降耗 目标制定 控制策略 COP-SD-IA集成方法
贺勇 2014-01 项目
This research aims to solve goal-setting and coping strategies of resource utilization and energy-saving & consumption-reducing in Iron Mine mining and milling management. The mining & milling system is divided into the subsystems of production, resource utilization, and energy consumption, a multi-objective constrained optimization problem (COP) model is established to obtain the optimal production grades (cut-off grade and milling grade) and the goals of resource comprehensive utilization and energy consumption; then system dynamics (SD ) model is established to reveal the mechanism of resource loss and energy consumption; the key points of resource loss and energy consumption could be found out by sensitivity analysis; basing on these key points, the paths are designed for resource conservation and energy saving; the optimal path would be seek out from the alternative paths by SD simulation, to get the control strategies. The above contents formulate a chain of goal- key point- path - strategy. The particle swarm optimization (PSO), artificial neural network (ANN) and differential evolution (DE) are integrated to be hybrid intelligent algorithm (IA), to solve the COP model, and to optimize the parameters and variables of SD model. This study could enrich the theory and methodology of sustainable development of mineral resources, and provide specific and feasible method and policy of resource conservation and energy saving for China's Iron Mine enterprises.
本项目致力于解决铁矿采选管理中资源利用与节能降耗的目标制定及应对策略难题。根据整个采选生产流程,将其分为采选生产、资源利用、能耗等多个子系统,建立多目标约束优化问题(COP)模型,得到最优生产指标(截止品位与入选品位)以及资源综合利用及节能降耗目标;然后建立系统动力学(SD)模型,揭示矿区资源损失和能耗机理;通过灵敏度分析,找出影响矿区资源损失和节能降耗的关键点;以这些关键点为基础,设计相关的资源节约和节能降耗路径,将备选路径代入SD模型进行模拟,进行资源节约和节能减排路径的优选,得到具体的控制策略,形成目标-关键点-路径-策略链。其中,集成粒子群算法(PSO)、人工神经网络(ANN)、差分进化算法(DE)等智能算法(IA),求解多目标约束优化模型,优化SD模型相关参数和变量。本研究可以丰富矿产资源可持续发展相关理论和方法,为我国铁矿企业资源节约和节能降耗提供具体可行的途径与政策建议。