Freeze-thaw characteristics of seasonal frozen soil in Asian mid-latitude deserts: A case study of typical deserts in northern China
["Xia, Tianbo","Zhang, Ping","Hu, Yaling","Ma, Juanli","Lin, Juntian","Liu, Yuan","Jin, Lei"]
2025-06-30
期刊论文
Vast deserts and sandy lands in the mid-latitudes cover an area of 17.64 x 106 km2, with 6.98 x 106 km2 experiencing seasonal frozen soil (SFG). Freeze-thaw cycles of SFG significantly influence local surface processes in deserts, impacting meteorological disasters such as infrastructure failures and sandstorms. This study investigates the freeze-thaw dynamics of SFG in crescent dunes from three deserts in northern China: the Tengger Desert, Mu Us Sandy Land, and Ulan Buh Desert, over the period from 2019 to 2024.Freezing occurs from November to January, followed by thawing from January to March. The thawing rate (2.72 cm/day) was 1.8 times higher than the freezing rate (1.48 cm/day). The maximum seasonal freezing depth (MSFD) exceeded 0.80 mat all dune slopes, with depths surpassing 1.10 mat the leeward slope and lower slope positions. Soil moisture content, ranging from 1 % to 1.6 %, is critical for freezing, and this threshold varies depending on the dune's mechanical composition. The hardness of frozen desert soil is primarily controlled by moisture, along with temperature and particle size.Temperature initiates freezing, while moisture and particle size control the resulting hardness.These findings shed light on the seasonal freeze-thaw processes in desert soils and have practical implications for agricultural management, engineering design, and environmental hazard mitigation in arid regions.
来源平台:CATENA