["Nassarden, Danielle Christine Stenner","Duarte, Leilane Gomes","Raymundo, Kelly Sousa Romera","Curado, Leone Francisco Amorim","Marques, Joao Basso","Palacios, Rafael da Silva"]2025-01-01期刊论文
(1)
Aerosols significantly impact the Earth's climate, affecting the amount of solar radiation that reaches its surface and directly impacting global warming. A large uncertainty regarding the impacts of aerosols on climate is related to Brown Carbon (BrC), an organic constituent emitted due to the incomplete combustion of light-absorbing biomass. This study aimed to define and quantify Black Carbon (BC) and Brown Carbon (BrC) absorptions using in-situ measurements from a campaign carried out in the Pantanal Mato Grosso between 2017 and 2019. The models were adjusted to calculate the Radiative Forcing (RF). By examining the RF perturbations caused by these two components, it was possible to determine the radiative balance perturbations at the upper atmospheric layer (top) and the surface. This study presented innovative findings that may help improve the understanding of the energy balance in the Pantanal region while allowing more accurate estimates of the contribution of aerosols to climate change models.