["Islam, Khandaker Iftekharul","Gilbert, James Matthew"]2025-05-01期刊论文
Climate change impacts water supply dynamics in the Upper Rio Grande (URG) watersheds of the US Southwest, where declining snowpack and altered snowmelt patterns have been observed. While temperature and precipitation effects on streamflow often receive the primary focus, other hydroclimate variables may provide more specific insight into runoff processes, especially at regional scales and in mountainous terrain where snowpack is a dominant water storage. The study addresses the gap by examining the mechanisms of generating streamflow through multi-modal inferences, coupling the Bayesian Information Criterion (BIC) and Bayesian Model Averaging (BMA) techniques. We identified significant streamflow predictors, exploring their relative influences over time and space across the URG watersheds. Additionally, the study compared the BIC-BMA-based regression model with Random Forest Regression (RFR), an ensemble Machine Learning (RFML) model, and validated them against unseen data. The study analyzed seasonal and long-term changes in streamflow generation mechanisms and identified emergent variables that influence streamflow. Moreover, monthly time series simulations assessed the overall prediction accuracy of the models. We evaluated the significance of the predictor variables in the proposed model and used the Gini feature importance within RFML to understand better the factors driving the influences. Results revealed that the hydroclimate drivers of streamflow exhibited temporal and spatial variability with significant lag effects. The findings also highlighted the diminishing influence of snow parameters (i. e., snow cover, snow depth, snow albedo) on streamflow while increasing soil moisture influence, particularly in downstream areas moving towards upstream or elevated watersheds. The evolving dynamics of snowmelt-runoff hydrology in this mountainous environment suggest a potential shift in streamflow generation pathways. The study contributes to the broader effort to elucidate the complex interplay between hydroclimate variables and streamflow dynamics, aiding in informed water resource management decisions.