2025-4-14 星期一

Impacts of Absorbing Aerosols and PM10 on Ozone Changes in the Guangdong, Hong Kong, Macao and Greater Bay Area, China

Interaction, SBDART, AAI, Surface ozone, ARF
["Liu, Minxia","Yang, Chunliang","Wang, Xiaowen"] 2024-06-01 期刊论文
(6)
Since the 1970s, China has continuously improved air pollution treatment and emission standards, but polluted weather still occurs frequently in some areas, especially haze weather. At present, most of the research on haze weather focuses on particulate matter, while ignoring the mechanism of aerosol-radiation-surface ozone interaction under haze weather. Therefore, this paper analyses the relationship between aerosol-radiation-surface ozone with the help of the (SBDART) model for the Guangdong-Hong Kong-Macao Greater Bay Area (GBA), using 2013-2021 as the time line. The results show similar trends in total column ozone and tropospheric ozone, and separate trends in surface ozone. Total column ozone and tropospheric ozone concentrations are at high values in spring and summer and low values in fall and winter; surface ozone is higher in summer and fall and lower in winter and spring. In contrast, Absorbing aerosol index (AAI) had high values in both spring and winter, and low values in summer and autumn. AAI, PM10 and Black carbon (BC) showed negative relations with ozone overall, but AAI and tropospheric ozone reached high values simultaneously in spring, indicating a rapid increase of pollutants caused by meteorological factors and human activities. Ozone concentration decreases from high values when precipitable water increases significantly. The analysis of potential sources of AAI indicated that local sources centered in Guangzhou were the primary source of AAI in the urban agglomeration of GBA, while other potential sources include biomass sources in the south and ozone sources in the northeast. The photolysis rate of fine-grained urban/industrial aerosols did not decrease significantly, leading to an increase in surface ozone concentration. Therefore, low aerosol radiative forcing (ARF) may increase surface ozone concentrations in the fine-particle aerosol mode.
来源平台:WATER AIR AND SOIL POLLUTION