Quantitative assessment of winter baseflow variations and their causes in Eurasia over the past 100 years

Winter baseflow variation Climate change River ice Eurasian rivers Past 100 years
["Qin, Jia","Ding, Yongjian","Han, Tianding"] 2024-10-20 期刊论文
Winter baseflow (WB) can stabilize freshwater inputs and has important impacts on nutrient migration and the water cycle of a specific region and the oceans. This study systematically analyzed the WB variations in fourteen major Eurasian rivers and found they all had commonly increasing trends (except the Yellow River), with the mean increase ratio of 53.0% (+/- 34.8%, confidence interval 95%) over the past 100 years (the longest time series is 1879-2015). Relative to Northern Eurasia (60 degrees N-70 degrees N) and Southern Eurasia (30 degrees N-40 degrees N), the river WB in middle Eurasia (40 degrees N-60 degrees N) had the largest increase rate (0.60%/year). The increases of the WB in Northern Eurasia and Southern Eurasia have speeded up since the 1990s; on the contrary, they have slowed down or even turned to a decreasing trend after the 1990s in the middle Eurasian rivers. Using multiple linear regression analysis, the quantitative relationship between WB and winter surface air temperature (max, mean and min), snowfall, soil temperature, antecedent precipitation, as well as the river-ice dynamic were determined. We found that the winter air temperature, especially the minimum air temperature was one major factor accounting for WB variation in Eurasia over the past century. When the winter air temperature rises, this leads a reduction in the thickness and volume of river ice, and thus decreases water storage in river ice and leads to an increase in the WB. About 19.6% (6.7%-41.5%) of the winter WB increase in rivers of Siberia was caused by the decreased river ice during the past 100 years. Although groundwater recharge was the dominant reason for WB change, the role of river ice should not be ignored in hydrological study of cold regions.
来源平台:COLD REGIONS SCIENCE AND TECHNOLOGY